Influence of nonmagnetic Zn substitution on the lattice and magnetoelectric dynamical properties of the multiferroic material CuO
نویسندگان
چکیده
Dynamic magnetoelectric coupling in the improper ferroelectric Cu1−xZnxO (x = 0, x = 0.05) was investigated using terahertz time-domain spectroscopy to probe electromagnon and magnon modes. Zinc substitution was found to reduce the antiferromagnetic ordering temperature and widen the multiferroic phase, under the dual influences of spin dilution and a reduction in unit-cell volume. The impact of Zn substitution on lattice dynamics was elucidated by Raman and Fourier-transform spectroscopy, and shell-model calculations. Pronounced softenings of the Au phonons, active along the direction of ferroelectric polarization, occur in the multiferroic state of Cu1−xZnxO, and indicate strong spin-phonon coupling. The commensurate antiferromagnetic phase also exhibits spin-phonon coupling, as evidenced by a Raman-active zone-folded acoustic phonon, and spin dilution reduces the spin-phonon coupling coefficient. While the phonon and magnon modes broaden and shift as a result of alloy-induced disorder, the electromagnon is relatively insensitive to Zn substitution, increasing in energy without widening. The results demonstrate that electromagnons and dynamic magnetoelectric coupling can be maintained even in disordered spin systems.
منابع مشابه
Magnetoelectric effect and phase transitions in CuO in external magnetic fields
Apart from being so far the only known binary multiferroic compound, CuO has a much higher transition temperature into the multiferroic state, 230 K, than any other known material in which the electric polarization is induced by spontaneous magnetic order, typically lower than 100 K. Although the magnetically induced ferroelectricity of CuO is firmly established, no magnetoelectric effect has b...
متن کاملThe Effect of Zn- Cr Substitution on the Structural and Magnetic Properties of Cobalt Ferrite Nanoparticles
In this investigation, the structural and magnetic properties of Cr and Zn substituted Co ferrite with the general formula Co1-xZnxFe2-xCrxO4 (x= 0.1, 0.3, 0.5, 0.7) as prepared by sol- gel method were studied. The structural, morphological and magnetic properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Scanning electron microscopy (SEM)...
متن کاملEffect of rare-earth (Er and Gd) substitution on the magnetic and multiferroic properties of DyFe0.5Cr0.5O3.
We report the results of our investigations on the influence of partial substitution of Er and Gd for Dy on the magnetic and magnetoelectric properties of DyFe0.5Cr0.5O3, which is known to be a multiferroic system. Magnetic susceptibility and heat capacity data, apart from confirming the occurrence of magnetic transitions at ~121 and 13 K in DyFe0.5Cr0.5O3, bring out that the lower transition t...
متن کاملThe Effect of Europium Doping on the Structural and Magnetic Properties of GdMnO3 Multiferroic Ceramics
Single phase Eu doped GdMnO3 ceramics were prepared using solid state reaction route. Several different characterization techniques were used to investigate the structural and magnetic properties of the samples, including X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and Vibrating Sample Magnetometer (VSM). All samples indicated single p...
متن کاملPHONON PROPERTIES OF A MULTIFERROIC BiFeO3 IN CUBIC PHASE
Multiferroic (MF) materials exhibit a highly coupled, spontaneous ferroelectric polarization and magnetization. Coupling between electrical and magnetic properties in multiferroic materials makes them a promising material for the design of multifunctional device applications, but also because of the interesting physics found in this class of materials. The role or absence of phonon softening in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014